Atomic structure of interface states in silicon heterojunction solar cells.
نویسندگان
چکیده
Combining orientation dependent electrically detected magnetic resonance and g tensor calculations based on density functional theory we assign microscopic structures to paramagnetic states involved in spin-dependent recombination at the interface of hydrogenated amorphous silicon crystalline silicon (a-Si:H/c-Si) heterojunction solar cells. We find that (i) the interface exhibits microscopic roughness, (ii) the electronic structure of the interface defects is mainly determined by c-Si, (iii) we identify the microscopic origin of the conduction band tail state in the a-Si:H layer, and (iv) present a detailed recombination mechanism.
منابع مشابه
Simple Photovoltaic Device Based on Multiwall Carbon Nanotube/Silicon Heterojunction
Multiwall carbon nanotubes (MWCNTs) are grown via chemical vapour deposition method directly on a stainless steel substrate. Raman spectroscopy and transmission electron microscopy are the techniques chosen to characterize the structure of the synthesized carbon nanotubes: few structural defects are detected. After their removal from the stainless steel substrate, the as-grown MWCNTs are then a...
متن کاملApplication of Au@SiO2 Plasmonic Nanoparticles at Interface of TiO2 Mesoporous Layers in Perovskite Solar Cells
To investigate the plasmonic effect in perovskite solar cells, the effect of depositing Au@SiO2 nanoparticles on the top and the bottom of mesoporous TiO2 layers was studied. First, Au@SiO2 nanoparticles were synthesized. The particles were then deposited at the different interfaces of mesoporous TiO2 layers. Although the two structures show approximately similar optical absorption, only cells ...
متن کاملA 12 % Efficient Silicon / PEDOT : PSS Heterojunction Solar Cell Fabricated at < 100 ° C
Solar cells based on a heterojunction between crystalline silicon and the organic polymer PEDOT:PSS were fabricated at temperatures < 100oC by spin-coating. The Si/PEDOT interface blocks electrons in n-type silicon from moving to an anode and functions as a low-temperature alternative to diffused p-n junctions. Reverse recovery measurements were used to show that current in the device is primar...
متن کاملSimple Photovoltaic Device Based on Multiwall Carbon Nanotube/Silicon Heterojunction
Multiwall carbon nanotubes (MWCNTs) are grown via chemical vapour deposition method directly on a stainless steel substrate. Raman spectroscopy and transmission electron microscopy are the techniques chosen to characterize the structure of the synthesized carbon nanotubes: few structural defects are detected. After their removal from the stainless steel substrate, the as-grown MWCNTs are then a...
متن کاملValence band alignment and hole transport in amorphous/crystalline silicon heterojunction solar cells
To investigate the hole transport across amorphous/crystalline silicon heterojunctions, solar cells with varying band offsets were fabricated using amorphous silicon suboxide films. The suboxides enable good passivation if covered by a doped amorphous silicon layer. Increasing valence band offsets yield rising hole transport barriers and reduced device effciencies. Carrier transport by thermal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 110 13 شماره
صفحات -
تاریخ انتشار 2013